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1. Introduction

The great success of the Standard Model (SM) in predicting the electroweak observables

leaves many theoretical open questions. One of them is the famous “naturalness problem”

of the Fermi scale: one looks for a non-accidental reason that explains why the Higgs boson

is so light relatively to any other short distance scale in Physics.

In order to keep the Higgs boson mass near the weak-scale expectation value v with

no more than 10% finetuning it is necessary to cut-off the top, gauge, and scalar loops at

a scale Λnat . 1− 2TeV. This fact tells us that the SM is not natural at the energy of the

Large Hadron Collider (LHC), and more specifically new physics that cuts-off the divergent

loops has to be expected at or below 2 TeV. In a weakly coupled theory this means new

particles with masses below 2 TeV and related to the SM particles by some symmetry.

For concreteness, the dominant contribution comes from the top loop. Thus naturalness

arguments predict new multiplet(s) of top-symmetry-related particles that should be easily

produced at the LHC, which has a maximum available energy of 14 TeV.

The possibilities in extending the SM are many. Here we focus on a model (see [1]) in

which the Higgs particle is realized as a pseudo-Goldstone boson associated to the breaking

SO(5) → SO(4) at a scale f > v. In some sense this extension is “minimal” since we add

only one field in the scalar sector. The Higgs mass will then be protected from self-coupling

corrections, and the cutoff scale can be raised up to 3 TeV. Following the approach of [2],

the SO(5) symmetry has then to be extended to the top sector by adding new vector-like

quarks in order to reduce the UV sensitivity of mh to the top loop. In principle new heavy
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vectors should also be included in order to cut-off the gauge boson loops, however here

only the quark sector will be studied because the dominant contribution comes from the

top. Moreover, from a phenomenological point of view, heavy quark searches at the LHC

may be easier than heavy vector searches (as pointed out in [3]).

In enlarging the fermion sector it is necessary to fulfill the requirements of the Electro

Weak Precision Tests (EWPT). More specifically, as shown in figure 1, the composite nature

of the Higgs boson and the physics at the cutoff produce two corrections to the S and T

parameters of the SM. For this reason, in order to be consistent with data, one can look

for a positive contribution to T coming from the fermion sector. Another experimental

constraint comes from the modified bottom coupling to the Z boson.

The main virtues of this model are minimality and effectiveness. That is we concentrate

on the fermion resonances, which can be lighter than the new gauge bosons and play

a central role in reducing the sensitivity of the Higgs boson mass to the new physics.

Moreover we do so introducing the least possible number of new particles and parameters.

In fact there are models which can be compatible with EWPT data and have the same

scalar sector, but since they start from 5d considerations they are forced to introduce much

more new fields (see e.g. [4] and [6]).

In section 2 a summary of some relevant previous works is reported. In section 3 I work

out a non minimal model which can be consistent with data. In section 4 two examples

are given of other models ruled out by the EWPT.

2. Summary of previous works

Making reference to [1] and [2] for a detailed description of the model, here I concentrate

on quarks. The fermion sector has to be enlarged in such a way that the top is (SO(5)

symmetrically) given the right mass mt = 171 GeV, and new heavy quarks are vector-

like in the v/f → 0 limit. The bottom quark can be considered massless at this level of

approximation, while lighter quarks are completely neglected.

The minimal way to do this is to enlarge the left-handed top-bottom doublet qL to

a vector (one for each colour) ΨL of SO(5), which under SU(2)L × SU(2)R breaks up as

(2, 2) + 1. The SM gauge group GSM = SU(2)L × U(1) is here given by the SU(2)L and

the T3 of the SU(2)R of a fixed subgroup SO(4) = SU(2)L × SU(2)R ⊂ SO(5). The full

fermionic content of the third quark generation is now:

ΨL =

(

q =

(

t

b

)

, X =

(

X5/3

X

)

, T

)

L

, tR, XR =

(

X5/3

X

)

R

, TR,

where the needed right handed states have been introduced in order to give mass to the

new fermions. Hypercharges are fixed in order to obtain the correct value of the electric

charges. Note that the upper component of the “exotic” X has electric charge 5/3.

In the next section an extended model with fermions in the fundamental representation

will be examined. The spinor representation (see e.g. [1]) is ruled out by requiring that the

physical left handed b-quark is a true doublet of SU(2)L and not an admixture of doublet

and singlet, as noted in [2] or in [5]. The requirement that there be not a left handed
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Figure 1: The experimentally allowed region in the ST plane, including contributions “from

scalars” and “from cutoff” (see [2], section 2). The dashed arrow shows that an extra positive

contribution to T is needed in order to make the model consistent with data. In section 3 it will be

shown that such contribution may come from a suitably extended top sector. This figure is taken

from [2].

charge −1
3 singlet to mix whith bL is a sort of “custodial symmetry” which protects the

Zbb coupling fom large corrections ([7]).

The Yukawa Lagrangian of the fermion sector consists of an SO(5) symmetric mass

term for the top (this guarantees the absence of quadratic divergences in the contribution

to mh, as shown by equation 2.4) and the most general (up to redefinitions) gauge invariant

mass terms for the heavy X and T :

Ltop = λ1ΨLφtR + λ2fTLTR + λ3fTLtR + MXXLXR + h.c, (2.1)

where φ is the scalar 5-plet containing the Higgs Field. Note that the adjoint representa-

tion of SO(5) splits in the adjoint representation of SO(4) plus a (4) of SO(4): this fact

guarantees that the Goldstone bosons of the SO(5) → SO(4) breaking have the quantum

numbers of the Higgs dublet. Up to rotations that preserve all the quantum numbers, with

a convenient definition of the various parameters, we can rewrite 2.1 in the form:

Ltop = qLHc(λttR + λT TR) + XLH(λttR + λT TR) + MT TLTR + MXXLXR + h.c. (2.2)

Through diagonalization of the mass matrix we obtain the physical fields, in terms

of which it is possible to evaluate the physical quantities. For example let us check the

cancellation of the quadratically divergent contribution to mh due to the top loop, starting

from the potential:

V = λ(φ2 − f2)2 − Af2−→φ 2 + Bf3φ5, (2.3)
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where
−→
φ are the first four components of φ. The Higgs boson mass can be shown to be

controlled by the A parameter, that is by the SO(5)-breaking term (mh = 2v
√

A for big λ).

This is reasonable since if everything were SO(5)-symmetric the Higgs particle would be a

massless Goldstone boson. The divergent part of the one loop correction to A, evaluated

as in [8] and setting v = 0 for simplicity, is now:

δA = −12f2

64π2
λ2

1

(

M2
X

f2
− 4 (λ1 + λ3)

2 − 2λ2
2

)

log Λ2

= − 3

16π2f2

(

λ2
t + λ2

T

)

(

M2
X + M2

T

(

2

1 + λ2
T /λ2

t

− 4

))

log Λ2. (2.4)

Notice that there is no quadratic divergence. Moreover MX and MT take the role of the

cutoff Λ in the original top-loop contribution. For this reason we cannot allow them to

be much above 2TeV, otherwise this logarithmic term alone produces a δmh of the same

order of the weak-scale expectation value v, and we are led again to a naturalness problem.

Some finetuning on the parameters A,B of equation 2.3 is necessary in order to obtain

v < f . This can be quantified by the logarithmic derivative:

∆ =
A

v2

∂v2

∂A
≈ v2

f2
.

To avoid a large ∆, throughout this paper I will assume f = 500 GeV, which means ≈ 10%

finetune. This implies that for the “naturalness cutoff” of this model we have (see [2] for

a detailed discussion):

Λ ≈ 4πf
√

Ng

∽ 3 TeV,

where Ng = 4 is the number of Goldstones.

As shown in [2] this model can be considered as the low energy description of any model

in which the EWSB sector has a SO(5) global symmetry partly gauged with GSM = SU(2)×
U(1). Different models can be meaningfully compared at the same level of finetuning, which

in practice means the same level of f . Generally, at this level of finetuning, the heavy vector

resonances have masses exceeding the cutoff, or at least exceeding the energy scale at which

the WW -scattering exceeds unitarity in the effective sigma model with the heavy scalar

sent above the cutoff.1 For this reason it is hard to see any gain in introducing them at

all, since they do not substantially improve the calculability. Throughout this paper their

contribution is considered to be included in that from the “physics at the cutoff”.

In order to check the compatibility with the EWPT, it is necessary to evaluate the

relative deviations of the T parameter and of the Z → bb coupling with respect to the

usual SM results:

T̂SM =
3g2m2

t

64π2m2
W

=
3GF m2

t

8
√

2
. (2.5)

Abb
SM =

λ2
t

32π2
, Abs

SM = VtsV
∗
tbA

bb
SM. (2.6)

1This is a general consequence of the composite nature of the Higgs Boson, as pointed out in [9]. For

f = 500 GeV the unitarity is saturated at s = 2.5TeV, see [2].
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0.25 ≤ δTfermions ≤ 0.50

Abb

Abb
SM

= 0.88 ± 0.15

Table 1: Experimental constraints on ρ and Z → bb.

where the definition of Abb and Abs is:

(

−1

2
+

sin2 θW

3
+ Abb

)

g

cos θW
ZµbLγµbL , Abs g

cos θW
ZµbLγµsL

and the limit mt ≫ mW is understood (see [10] or [11]). The experimental constraints are

summarized in table 1, where the former condition comes from figure 1, the latter from

LEP precision measurements.2 In principle one could also consider the constraint coming

from the b-factories data on B → Xsl
+l− decays:

Abs

Abs
SM

= 0.95 ± 0.20,

however using this constraint or the one in table 1, the final conclusions do not change.

Analytic approximate expressions for δT and δAbb can be found in [2]. In figure 2 a

typical result of the numerical computation of the one-loop δT and Abb/Abb
SM is reported

in terms of the parameters of Lagrangian 2.2. The only effective free parameters are MX ,

MT (which are roughly equal to the physical masses) and λt/λT , which is taken from 1/3

to 3 so that the theory is not strongly coupled. The result is that there are no allowed

regions in the parameter space for this minimal model. This fact suggests to consider the

non minimal model of the next section.

3. An extended model in the top sector

In this section I study an explicit extended top sector which is motivated only by the

fulfillment of the requirements of the EWPT.

3.1 Non-minimal model

In this non minimal model the SO(5) symmetric quark sector is completely made up of

new quarks and the top mass term arises through order v/f mass mixing. The fermionic

content is now:

ΨL,R =

(

Q =

(

Qu

Qd

)

, X =

(

Xu

Xd

)

, T

)

L,R

, qL =

(

t

b

)

L

, tR,

where Q is now a standard (Y = 1/6) SU(2)L doublet and the quantum numbers are the

same as in the previous case. The Yukawa Lagrangian is now L = Lint + LBSM, where

2See [2], par. 3.2.2. Experimental data are from [12].
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Figure 2: Numerical isoplot of the one loop corrections to δT and Abb/Abb
SM

versus the Lagrangian

parameters (MX , MT ) in the minimal model for λT /λt = 1. Note that there is no experimentally

allowed region.

LBSM involves only “beyond the SM” fields with a non renormalizable Yukawa interaction,

and Lint describes the mass mixing of the standard fields with the heavy fermions:

LBSM =
y

f
ΨLφφT ΨR + mQQLQR + mXXLXR + mT TLTR + h.c.

Lint = λ1fqLQR + λ2fTLtR + h.c. (3.1)

Defining:

λt =
yλ1λ2f

2

√

(mT + yf)2 + (λ2f)2
√

m2
Q + (λ1f)2

(3.2)

MT =
√

(mT + yf)2 + (λ2f)2 A =
mT + yf

λ2f
(3.3)

MQ =
√

m2
Q + (λ1f)2 B =

mQ

λ1f
(3.4)

MX = mX Mf = λtf , (3.5)

up to rotations which preserve quantum numbers the charge 2/3 mass matrix becomes,

with an obvious notation and “quark vectors” (t, T,Q,X)L,R:














λtv −Aλtv −
√

1+A2(λtv)2

Mf
−

√
1+A2(λtv)2

Mf

0 MT

√
1 + A2

√
1 + B2λtv

√
1 + A2

√
1 + B2λtv

−Bλtv ABλtv MQ + B
√

1+A2(λtv)2

Mf

B
√

1+A2(λtv)2

Mf

−
√

1 + B2λtv A
√

1 + B2λtv
√

1+A2
√

1+B2(λtv)2

Mf
MX +

√
1+A2

√
1+B2(λtv)2

Mf















. (3.6)

The physical masses of the charge 2/3 quarks will be corrected by diagonalization, while

the Qd (charge −1
3) and Xu (charge 5

3) masses remain exactly MQ and MX since there is
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no state to mix with. As already mentioned, to avoid finetuning we shall take f = 500 GeV

so that Mf is not a free parameter.

I report the exact one loop results for δT and Abb up to order ǫ2 in the limit in which

three masses are much bigger than the other one.

For the correction to T we have:

MQ,MX ,Mf ≫ MT :
δT

TSM
≈ 2A2

(

log
M2

T

m2
t

− 1 +
A2

2

)(

mt

MT

)2

MT ,MX ,Mf ≫ MQ :
δT

TSM
≈ 4B2

(

log
M2

Q

m2
t

− 3

2
+

1

3
B2

)(

mt

MQ

)2

(3.7)

MT ,MQ,Mf ≫ MX :
δT

TSM
≈ −4(1 + B2)

(

log
M2

X

m2
t

− 11

6
− 1

3
B2

)(

mt

MX

)2

MT ,MQ,MX ≫ Mf :

δT

TSM
≈ 2(1 + A2)

3(M2
Q − M2

X)2

{

12B
√

1 + B2(M3
QMX + MQM3

X) −

−(1 + 2B2)(7(M4
Q + M4

X) − 26M2
QM2

X) +

+
6 log

M2
Q

M2
X

M2
Q − M2

X

(

− 4B
√

1 + B2M3
QM3

X − 3M2
QM4

X + M6
X +

+B2(M6
Q − 3M4

QM2
X − 3M2

QM4
X + M6

X)
)

}

(

λtv

Mf

)2

.

while for Z → bb it is:

MQ,MX ≫ MT :
δAbb

Abb
SM

≈ 2A2

(

log
M2

T

m2
t

− 1 +
A2

2

)(

mt

MT

)2

(3.8)

MT ,MX ≫ MQ :
δAbb

Abb
SM

≈ B2

(

log
M2

Q

m2
t

− 1

)(

mt

MQ

)2

+ 2B
√

1 + A2
(λtv)2

MQMf

MT ,MQ ≫ MX :

δAbb

Abb
SM

≈ (1 + B2)

(

log
M2

X

m2
t

− 1

)(

mt

MX

)2

+ 2
√

1 + B2
√

1 + A2
(λtv)2

MXMf

These results are compatible with [6]. In the following, through numerical diagonalization

of the mass matrix, it will be shown that compatibility with the experimental constraints

of table 1 is now allowed in a thin slice of parameter space.

3.2 Minimal values for the masses of the new quarks

The parameter space has been studied for 1
3 ≤ A,B ≤ 3 with vector-like quark masses

all below Mmax, looking for experimentally allowed configurations with relatively light

vector-like quarks. For naturalness considerations, Mmax cannot be much above 2TeV

– 7 –
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Figure 3: Isoplot of δT and Abb/Abb
SM

in the (MX , MT ) plane for (A = 1.8, B = 1.1, MQ =

900GeV) in the non-minimal model.

(see equation 2.4). A typical situation, for example A = 1.8, B = 1.1, MQ = 900 GeV,

is represented in figure 3, where I report the isolines of δT and Abb in the (MX ,MT )

plane. The thicker lines correspond to the regions constrained as in table 1. The small

overlap between the two regions around MX ,MT ≈ 1TeV is the allowed portion of the

parameter space.

For a better illustration of this case, consider for example an exact one loop calculation,

which corresponds to a point in figure 3 (masses in GeV):

MT = 1000 MX = 1100

MQ = 900

A = 1.8 B = 1.1

→

Mphys
T = 1010

Mphys
Q = 550 Mphys

Q−1/3 = 920

Mphys
X = 1940 Mphys

X5/3 = 1130

δT = 0.28 Abb = 0.97

Note the significant difference between Mheavy and Mphys
heavy. This is mainly due to

diagonalization splitting, but also to a mass-matrix rescaling which is necessary in order

to get the correct value for the top mass.

A most interesting phenomenological question concerns the smallest possible values

for the masses of the new quarks which are compatible with the constraints of table 1. A

study of the full parameter space allows to assert that the following properties hold:

1. At least one of the new charge 2/3 quarks has to be heavy, that is around 1.9 TeV.

2. Light Q: The lightest possible new-quark state is the Q2/3, which in principle can be

as light as 290 GeV. In such configurations a heavy T or X is required, for example:

– 8 –
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MT = 1225 MX = 630

MQ = 320

A = 2.81 B = 0.33

→

Mphys
T = 1890

Mphys
Q = 290 Mphys

Q−1/3 = 340

Mphys
X = 555 Mphys

X5/3 = 670

δT = 0.40 Abb = 1.02

3. Light T: Allowing MX ≈ 1.9 TeV it is possible to obtain a T quark mass around

500 GeV for example:

MT = 940 MX = 1200

MQ = 960

A = 1.86 B = 1.1

→

Mphys
T = 510

Mphys
Q = 1060 Mphys

Q−1/3 = 955

Mphys
X = 1940 Mphys

X5/3 = 1195

δT = 0.43 Abb = 1.01

4. Light X: MX2/3 can be as low as 450 GeV with X5/3 at 950 GeV, and heavy T , for

example:

MT = 1152 MX = 969

MQ = 971

A = 2.99 B = 0.71

→

Mphys
T = 2050

Mphys
Q = 925 Mphys

Q−1/3 = 1026

Mphys
X = 460 Mphys

X5/3 = 1024

δT = 0.28 Abb = 0.93

5. Light X5/3: MX5/3 can be relatively small. From point 2 we see that the X5/3 can

be also as light as 670 GeV.

3.3 Allowed volume in parameter space

Of some interest is the following question: how extended is the volume of the parameter

space which is allowed by the experimental data? To answer this question one can consider

the fractional volume (making a linear sampling) of the experimentally allowed region in

the relevant parameter space:

{

1

3
≤ A,B ≤ 3

}

∩ {200 GeV ≤ MT,X,Q ≤ Mmax}

I call “probability” of the model this fractional volume. Note that all the points in the

“total volume” of this parameter space are viable in the sense of giving a correct EWSB,

even if most of them do not satisfy the EWPT. In figure 4 the result of this calculation is

given as a function of Mmax. For example we have:

Allowed volume

Total volume (Mmax = 2.5 TeV)
≈ 0.05% =

1

2000
. (3.9)

Note that for the model to be consistent with data it is necessary to have at least one

Mheavy & 1 TeV (which actually leads to one Mphys
heavy & 1.8 TeV because of the mass splitting

and rescaling, as explained in section 3.2).
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Figure 4: % Probability of the allowed region (see text).

4. Alternative models

In the course of this investigation other Lagrangian models for fermion masses have been

considered, all involving more fields than the minimal model. In this section I briefly

report about two of them, with different motivations. None gives an acceptable region of

parameter space.

4.1 A different coupling

One can ask himself what happens considering Lagrangian 3.1 with a standard

Yukawa fermion-scalar interaction instead of the non-renormalizable one studied in the

previous section.

This can be done by taking exactly the same fermion sector extension described in

section 3.1 with:

L = λ1fqLQR + λ2fTLtR + yΨLφtR

+mQQLQR + mXXLXR + mT TLTR + h.c. (4.1)

Note that in this case there is no separation between Lint and LBSM as in the model of

section 3. Up to rotations which preserve quantum numbers the charge 2/3 mass matrix

is now, with the same notation of 3.6:











t
0
L

T
0
L

Q
0
L

X
0
L





















−λtv −Aλtv 0 0

0 MT 0 0

Bλtv ABλtv MQ 0

−
√

1 + B2λtv A
√

1 + B2λtv 0 MX





















t0R
T 0

R

Q0
R

X0
R











+ h.c, (4.2)
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where it is:

λt =
yλ1f

2

√

1 + f2(λ2+y)2

(mT )2

√

(mQ + (λ1f)2
(4.3)

MT =
√

m2
T + f2(λ2 + y)2 A =

(λ2 + y)f

mT
(4.4)

MQ =
√

m2
Q + (λ1f)2 B =

mQ

λ1f
(4.5)

MX = mX . (4.6)

Repeating the procedure to evaluate the δT and Abb corrections, we obtain exactly the

expressions 3.7 and 3.8 with Mf → ∞. Note however that the definition of A and B is

different.

The result of the numerical calculation is that there is no experimentally allowed region.

This fact shows also that compatibility with the EWPT is a delicate issue, and in general

the approximation mt
Mheavy

≪ 1 is not reliable.

4.2 A different model: SU(4)/Sp(4)

In the literature several other models for the Higgs particle as a pseudo-Goldstone bosone

have been considered, based on different groups. A common feature shared with the

SO(5)/SO(4) model is an extended top sector. Here we consider a suitable extension

of the SU(4)/Sp(4) composite-Higgs theory described in [13]. The number of fields which

can mix with the top is exactly the same as in the SO(5)/SO(4) extended model, with the

same number of free parameters.

Enlarging the top sector with new fermions in the vectorial representation of SU(4),

as done in [13], is problematic because there is an SU(2)L left handed singlet with electric

charge −1/3 which will mix at tree level with the bottom, and this is phenomenologi-

cally not defendable (see section 2). This problem is avoided with new fermions in the

antisymmetric representation:

AL =











0 QL X
5/3
L tL

0 XL bL

0 TL

0











.

The quantum numbers of the fields are fixed by the natural way SU(2)L × SU(2)R is

embedded in Sp(4). Introducing the needed right-handed states the third generation is

therefore enlarged as:

(

X
5/3
L,R

XL,R

)

= (2)7/6 ,

(

tL
bL

)

= (2)1/6 , tR, QL,R, TL,R = (1)2/3.
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The most general Lagrangian respecting SU(2)×U(1) gauge invariance and the SU(4)

symmetry of the Yukawa interaction is:

L = λ1ftRQL + λ2ftRTL +
1

2
y1QRtr(Σ∗AL) + y2fQRTL

+mQQRQL + mT TRTL + mX

(

XRXL + X
5/3
R X

5/3
L

)

where, keeping only the Yukawa interactions with the Higgs doublet:

1

2
tr(Σ∗AL) = f(QL + TL) + H

(

tL
bL

)

+ Hc

(

X
5/3
L

XL

)

.

Here f is the scale of the SU(4)/Sp(4) breaking and H is the Higgs doublet.

This Lagrangian can be analyzed in a totally analogous way as in the previous sections.

The mass matrix, concentrating on charge 2/3 quark mass terms and up to quantum-

number preserving rotations, is:

L =











tL
TL

QL

X
d
L











T 









λtv Aλtv Bλtv 0

0 MT 0 0

0 0 MQ 0

λtv Aλtv Bλtv MX





















tR
TR

QR

Xd
R











+ h.c. (4.7)

where for example:

λt =
λ1y1mT f

√
2
√

f2λ2
1 + (mQ + fy1)2

√

m2
T +

f2(λ2(mQ+fy1)−fλ1(y1+y2))2

f2λ2
1+(mQ+fλ1)2

,

and also the other new parameters are combinations of the original ones. Note that now Q

is a singlet like T , while X is again a component of an Y = 7/6-doublet. Computing the

one loop correction to the T parameter up to second order in λtv/Mheavy we now obtain:

MX ,MQ ≫ MT :
δT

TSM
≈ 2A2

(

log
M2

T

m2
t

− 1 +
A2

2

)(

mt

MT

)2

MX ,MT ≫ MQ :
δT

TSM
≈ 2B2

(

log
M2

Q

m2
t

− 1 +
B2

2

)(

mt

MQ

)2

MQ,MT ≫ MX :
δT

TSM
≈ −4

(

log
M2

X

m2
t

− 11

6

)(

mt

MX

)2

while for Z → bb it is:

MQ,MX ≫ MT :
δAbb

Abb
SM

≈ 2A2

(

log
M2

T

m2
t

− 1 +
A2

2

)(

mt

MT

)2

MT ,MX ≫ MQ :
δAbb

Abb
SM

≈ 2B2

(

log
M2

Q

m2
t

− 1 +
B2

2

)(

mt

MQ

)2

MQ,MT ≫ MX :
δAbb

Abb
SM

≈
(

log
M2

X

m2
t

− 1

2

)(

mt

MX

)2
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Figure 5: Isolines of δT and Abb/Abb
SM

in the (MX , MT ) plane for the the SU(4)/Sp(4) model. Plot

for A = B = 1, MQ = 800GeV.

The experimental consistency of the model has been checked via numerical diagonal-

ization of the mass matrix (4.7) in the relevant parameter space: 1
3 ≤ A,B ≤ 3 and

MT ,MQ,MX below 2 TeV. The final result is that this model can not be consistent with

experimental data. In figure 5 I give an example of the typical situation.

5. Conclusions

Heavy vector-like fermions are a likely component of models for Electroweak symmetry

breaking which address the naturaleness problem of the Fermi scale. Constraining their

mass is crucial in order to assess the potential of their discovery at the LHC. Here I have

analyzed such constraints in a SO(5)/SO(4) model for the Higgs doublet as a pseudo-

Goldstone boson. These constraints arise from the EWPT, including B-physics.

Confirming the results of [2], I have found that the minimal extension of the top

sector has problems in fulfilling the experimental requirements. For this reason I have

considered other possible extensions of the fermion sector, as well as another model based

on a different symmetry. These models have received attention in the literature and have

different motivations.

The main result is that one such extension is consistent with the constraints coming

from the EWPT, including B-physics, in a thin region of its parameter space. To the third

generation quarks of the Standard Model one has to add a full vector-like 5-plet of SO(5),

i.e. in particular three new quarks of charge 2/3 which mix with the top: T,Q,X.

In this region of parameter space the new quarks can be as light as a few hundreds GeV

and might therefore be accessible at the LHC. The range of possible masses is summarized

in the following table (see section 3.2):
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Quark SU(2)L × U(1)Y Constraints on mass

Q (2)1/6 MQ2/3 & 300 GeV, MQ−1/3 & 350 GeV

T (1)2/3 MT 2/3 & 500 GeV

X (2)7/6 MX2/3 ≥ 450 GeV, MX5/3 & 650 GeV

It is of interest that, randomly “picking up a point” in the relevant parameter space

with all fermion masses below 2.5 TeV, the probability of being consistent with data is very

small, roughly 1/2000.

None of the other similar models that have been examined have regions of the corre-

sponding parameter space which are compatible with the experimental data.

Acknowledgments

For this work I am greatly indebted to Riccardo Barbieri. I also thank Vyacheslav S.

Rychkov, Duccio Pappadopulo, and Giovanni Pizzi for useful discussions.

References

[1] K. Agashe, R. Contino and A. Pomarol, The minimal composite higgs model, Nucl. Phys. B

719 (2005) 165 [hep-ph/0412089].

[2] R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an

extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432].

[3] R. Barbieri, Signatures of new physics at 14 Tev, arXiv:0802.3988.

[4] R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models,

Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048].

[5] R. Contino, A holographic composite Higgs model, hep-ph/0609148.

[6] M. Carena, E. Pontón, J. Santiago and C.E.M. Wagner, Electroweak constraints on warped

models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055].

[7] K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for Zbb̄, Phys.

Lett. B 641 (2006) 62 [hep-ph/0605341].

[8] R. Barbieri, Supersymmetric gauge models of the fundamental interactions, Acta Phys.

Austriaca Suppl. 24 (1982) 363.

[9] M. Schmaltz and D. Tucker-Smith, Little Higgs review, Ann. Rev. Nucl. Part. Sci. 55 (2005)

229 [hep-ph/0502182].

[10] R. Barbieri, M. Beccaria, P. Ciafaloni, G. Curci and A. Vicerè, Radiative correction effects of
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